skip to main content


Search for: All records

Creators/Authors contains: "Pudlewski, Scott"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. null (Ed.)
    To mitigate the long-term spectrum crunch problem, the FCC recently opened up the 6 GHz frequency band for unlicensed use. However, the existing spectrum sharing strategies cannot support the operation of access points in moving vehicles such as cars and UAVs. This is primarily because of the directionality-based spectrum sharing among the incumbent systems in this band and the high mobility of the moving vehicles, which together make it challenging to control the cross-system interference. In this paper we propose SwarmShare, a mobility-resilient spectrum sharing framework for swarm UAV networking in the 6 GHz band. We first present a mathematical formulation of the SwarmShare problem, where the objective is to maximize the spectral efficiency of the UAV network by jointly controlling the flight and transmission power of the UAVs and their association with the ground users, under the interference constraints of the incumbent system. We find that there are no closed-form mathematical models that can be used characterize the statistical behaviors of the aggregate interference from the UAVs to the incumbent system. Then we propose a data-driven three-phase spectrum sharing approach, including Initial Power Enforcement, Offline-dataset Guided Online Power Adaptation, and Reinforcement Learning-based UAV Optimization. We validate the effectiveness of SwarmShare through an extensive simulation campaign. Results indicate that, based on SwarmShare, the aggregate interference from the UAVs to the incumbent system can be effectively controlled below the target level without requiring the real-time cross-system channel state information. The mobility resilience of SwarmShare is also validated in coexisting networks with no precise UAV location information. 
    more » « less
  4. Routing protocol design is one of the major challenges for swarm UAV networks. Due to the characteristics of a dynamic network topology, the low-complexity and the large volume of UAV devices, existing routing protocols based on network topology information, and routing table updates are not applicable in swarm UAV networks. In this paper, a Random Network Coding (RNC) enabled routing protocol is proposed to support an efficient routing process, which does not require network topology information or pre-determined routing tables. With the proposed routing protocol, the routing process could be significantly expedited, since each forwarding UAV may have already overheard some encoded packets in previous hops. As a result, some hops may be required to deliver a few encoded packets, and less hops may need to be completed in the whole routing process. The corresponding simulation study is conducted, demonstrating that our proposed routing protocol is able to facilitate a more efficient routing process. 
    more » « less